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OPTIMIZATION OF CONCENTRATIONS OF
ALLOYING ELEMENTS IN STEEL FOR MAXIMUM
TEMPERATURE, STRENGTH, TIME-TO-RUPTURE AND
MINIMUM COST AND WEIGHT
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Abstract: This prospect is based on the use of experimental data and a new evolutionary truly multi-
objective optimization algorithm for simultaneously optimizing several properties of steel alloys while
minimizing the number of experimental evaluations of the candidate alloys. This approach has been shown
to have the potential of identifying new chemical compositions for significantly superior performance alloys
requiring as few as 80 new alloy samples that otherwise could not be identified with classical techniques
without requiring thousands of new alloys. Furthermore, this approach has been demonstrated to have the
potential for determining concentrations of alloying elements for a specified set of alloy’s properties for
specific applications, thereby maximizing their utilization. Cost and weight are two of the objectives in
addition to the more standard objectives such as maximized operating temperature, tensile stress and time-
to-rupture.

1 INTRODUCTION

This prospect is based on the use and a special adaptation of a multi-objective constrained Indirect
Optimization based upon Self-Organization (IOSO). This multi-objective optimization algorithm allows for
concentrations of a number of alloying elements to be optimized so that a finite number of properties
(maximum tensile strength, maximum operating temperature, maximum time-until-rupture, minimum
weight, minimum cost, etc.) of the alloy are simultaneously extremized, while satisfying a number of
equality and inequality constraints.

I0SO multi-objective optimization algorithm is of a semi-stochastic type incorporating certain aspects
of a selective search on a continuously updated multi-dimensional response surface. Objective function
evaluations in this particular project were obtained utilizing experimental testing and verification of the
initial alloy samples and all newly created alloys in order to determine optimum concentrations of each of
the alloying elements. This novel alloy design tool is expected to minimize the need for the addition of
expensive alloying elements and still obtain the optimum properties needed to design the components. The
main benefits of IOSO algorithm are its outstanding reliability in avoiding local minimums, its
computational speed, and a significantly reduced number of required experimentally evaluated alloy
samples as compared to more traditional gradient-based and genetic optimization algorithms. Also, the self-
adapting multi-dimensional response surface formulation used by I0SO allows for incorporation of realistic
non-smooth variations of experimentally obtained data and allows for accurate interpolation of such data.

2 OPTIMIZING ALLOYS FOR MAXIMUM PERFORMANCE BY UTILIZING AN
EXISTING DATABASE

An initial database was obtained containing experimentally measured mechanical properties on 201 H-
type cast steel alloys. However, certain alloys did not have complete information on alloy chemical
composition. These alloys were deleted from the set. This resulted in the final database having only 158
steel alloys.

Concentrations of the following 17 elements were taken as independent variables:
C, S, P, Cr, Ni, Mn, Si, Cu, Mo, Pb, Co, Ch, W, Sn, Al, Zn, Ti.
The minimum and maximum values for the concentrations of each element were determined from the

existing set of experimental data (EXp _min;,EXp_max;, i=117). Then, new minimum and
maximum  values for each of the 17 elements were obtained as  follows:
Min; =0.9-Exp_min;, Max; =1.1- Exp_max;, i =117 (Table 1).

© Sigma Technology — IOSO Technology



Table 1. Ranges of concentrations of 17 independent design variables

(chemical elements in the steel alloy)

C S P Cr Ni Mn Si Cu Mo
min 0.063 0.001 0.009 17.500 | 19.300 | 0.585 0.074 0.016 0.000
max | 0.539 0.014 0.031 39.800 | 51.600 | 1.670 2.150 0.165 0.132
Pb Co Cb W Sn Al Zn Ti
min | 0.001 0.000 0.000 | 0.000 | 0.000 0.001 0.001 0.000
max | 0.006 | 0.319 1.390 | 0.484 | 0.007 0.075 0.015 0.198

The following parameters were then used as optimization objectives:

e  Stress (PSI — maximize);

e  Operating temperature (T — maximize);

e  Time to "survive" until rupture (Hours — maximize).

During this research the solution of a simultaneous three-objective optimization problem and a series of

two-objectives problems were accomplished when one of the considered parameters was constrained.

During the first stage, the problem of simultaneously optimizing three objectives was solved with 100
points of Pareto optimal solutions (Fig. 1). Analysis of this result allowed us to extract an area of admissible

combinations of different optimization objectives since results were distributed in the admissible part of the
objectives’ space quite uniformly.
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Fig.1. Time-to-rupture vs. strength for three-objectives Pareto set using 17 design variables. Constant
temperature contours are also indicated in degrees Fahrenheit.
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Such a distribution offers a possibility for a significant improvement of accuracy of response surfaces
on condition that the experiments will be carried out at the obtained Pareto optimal points. Then, in
accordance with the elaborated technique, it is necessary to conduct experiments at the obtained Pareto
optimal points, evaluate accuracy of prediction of values of partial optimization objectives, and either
complete the process or perform another iteration.

3 DESIGN OPTIMIZATION OF NEW GENERATIONS OF STEEL ALLOYS
UTILIZING EXPERIMENTAL VERIFICATION

This work represents the first experimentally verified attempt to step out of the initially available
database when optimizing nickel based heat-resistant alloy castings containing Ni, C, Cr, Co, W, Mo, Al, Ti,
B, Nb, Ce, Zr, Y, and S, P, Fe, Mn, Si, Pb, Bi as trace elements. Heat treatment of the samples of such
alloys involved heating to 1210 C, holding for 4 hours, and air cooling to room temperature. During these
tests the maximum stress at room temperature (sigma) and the time to survive until rupture at 975 C and 230
N/mm’” load were measured. Manufacturing of all of the alloys involved in this case and experimental
testing of their properties were carried out in the same certified metallurgical institute. Chemical
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compositions of these alloys differed by varying concentrations of the following seven elements: C, Cr, Co,
W, Mo, Al, Ti (Table 2). The concentration of Nb in all tests was 1.1%, while concentrations of B, Ce, Zr, Y
were 0.025%, 0.015%, 0.04%, and 0.01% respectively. The concentration of nickel made the rest of 100%
of the alloy. Average percents of the addition agents were negligible.

Table 2. Ranges of design variables (concentrations of 7 major alloying elements)

C Cr Co w Mo Al Ti
min 0.13 8.0 9.0 9.5 1.2 5.1 2.0
max 0.20 9.5 10.5 11.0 24 6.0 2.9

During each I0SO iteration, a two-criterion optimization task with 20 Pareto optimal points was solved.
The two simultaneous optimization objectives were: maximize stress and maximize time-to-rupture at
elevated temperature. The initial database contained 120 experimentally tested steel alloys whose
concentrations were specified using Sobol’s algorithm so that they are as uniformly distributed as possible.
After that, 4 iterations were conduced using IOSO with 20 new (Pareto optimal) alloys predicted and
consequently experimentally tested after each iteration. Thus, the total number of experimentally tested
alloys during the solution of the entire optimization problem using IOSO was only 200 which is considered
a significant improvement over the current alloy design methodologies. The accuracy and predicting
capabilities of the self-adapting response surfaces generated by IOSO were constantly improving during the
optimization process. A summary of the evolution of the Pareto front through four IOSO iterations (Fig. 2)
demonstrates that IOSO is capable of reliably predicting concentrations of alloying elements that create
superior performance steel alloys after each application of IOSO. Notice that all data presented in these
figures are the results of experimental evaluations involving 120 original database alloys and four sets of 20
alloys each predicted by the IOSO algorithm.
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Figure2: The dynamics of change of Pareto optimal solutions after each of the four iterations with I0SO.
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4 INCLUDING MINIMUM COST AND WEIGHT OBJECTIVES

In many applications it is highly desirable to use as light alloys as possible. Yet, it is well-known that
high temperature resistant alloys require ingredients that have the highest melting points. However, these
alloying elements are also very dense, thus heavy. This is an obvious example of a multi-objective
optimization where some of the objectives (in this case high temperature resistance and weight) are highly
opposing.

Furthermore, certain alloying elements are considerably more expensive than other elements. In direct
response to a rapidly increasing demand from industry and military to develop high performance alloys that
will also be affordable, we obtained a standard daily price list of typical alloying elements available on the
metals market. We also obtained a list of densities of these alloying elements. The original idea was to
optimize simultaneously the following five objectives: maximum stress, maximum temperature, time-to-
rupture, minimum cost of the raw ingredients, and minimum volume-specific weight (density) of the
resulting metal alloy. However, we reformulated it as a sequence of five different multi-objective
optimization problems that are depicted in Fig. 3-6.
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Figure 3: Pareto fronts for two primary constraints (minimum cost and minimum specific weight) and five
secondary constraints (maximum temperature).
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Figure 4: Pareto fronts for two primary constraints (maximum stress and maximum temperature) and seven
secondary constraints (time-to-rupture).
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Figure 5: Pareto fronts for two primary constraints (time-to-rupture and maximum temperature) and three
secondary constraints (maximum stress).
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Figure 6: Pareto fronts for two primary constraints (time-to-rupture and maximum stress) and three
secondary constraints (maximum temperature).
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5 INVERSE DESIGN OF ALLOYS FOR SPECIFIED PROPERTIES

This is an entirely new concept in design of alloys. The inverse problem in this case is determination of
chemical composition(s) of alloy(s) that will provide specified levels of, for example, stress at a specified
temperature for the specified length of time. The inverse problem can be then formulated as, for example, a
multi-objective optimization problem with a given set of equality constraints. We have used IOSO multi-
objective optimization algorithm to achieve the solution of this type of inverse alloy design problem. The
results (Fig. 7) demonstrate that it is possible to create a large number of alloy compositions that will satisfy
the specified multiple properties. It should be pointed out that these are the visualizations of only two (Cr
and Ni) of the 14 chemical elements whose concentrations were optimized in order to illustrate how the
inverse design method works.

Notice that when the temperature and the life expectancy are introduced and progressively increased,
the feasible domain for varying most of the alloying elements’ concentrations will rapidly shrink. Similar
general trend can be observed when the life expectancy is specified and progressively increased.

Multicriteria optimization of material composition
for preset properties (inverse problem) using method #3
Number of variables (alloying elements): 14.
Objectives: Cr and Ni concentration.

Constraints:
stress=4000 psi;
temperature=1800 F;
time=preset time.
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Figure 7: Inversely designed Pareto optimal concentrations of Ni and Cr as a function of time constraint.

CONCLUSIONS

The exposed alloy design methods use an evolutionary optimization algorithm that utilizes neural
networks, radial basis functions, Sobol’s algorithm, and self-adapting multi-dimensional response surface
concepts based on graph theory. Evaluations of physical properties of all alloys (maximum stress at elevated
temperature, maximum operating temperature, time-to-rupture at elevated temperature) were performed
using classical experimental techniques thus automatically confirming the validity of the predictions of
properties of the optimized alloys. Alloys were successfully designed for minimum weight and minimum
cost of raw ingredients in addition to the multiple physical properties like maximum stress, time-to-rupture
and operating temperature. These alloy design methods could also incorporate uncertainty of the alloy
manufacturing and testing. These design methods are applicable to design of any type of alloys and could
account for additional desired features of new alloys like corrosion resistance, microstructure features,
thermal and mechanical treatment, manufacturing cost, etc.
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