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Abstract 

The problem of robust design optimization consists in 
the search for technical solutions that can be 
implemented in practice with high probability. From 
mathematical point of view the problem comes to 
optimization of design parameters of the system 
under investigation according to probabilistic criteria. 
This paper presents essential stages of robust design 
optimization solution: identifying uncertainties and 
choosing mathematical model; forming of 
probabilistic criteria; optimization problem statement; 
choosing the procedure for calculation of 
probabilistic criteria and choosing the optimization 
technique. Options for robust design optimization 
solution are considered with the use of multicriteria 
optimization techniques as well as with procedures of 
multilevel optimizations. Examples of real-life 
problems solution are also given. 

Introduction 

Designing a complex technical system in present-day 
conditions is impossible without the use of 
optimization techniques. In fact, design and 
optimization processes do represent a single whole. 
As soon as humans started to create technical devices 
(stone axes, for example), they thought about making 
their tools as efficient as possible. At first, people 
used to design and optimize technical systems 
simultaneously, as they thought about the devices 
they make. While designing a technical system and 
picking up its parameters the designer had always 
been implicitly assessing possibilities of practical 
implementation of the system. 

The rise of the complexity of systems as well as the 
number of parameters needed to be coordinated with 
each other in an optimal way have led to the necessity 
of using mathematical modeling of systems and 
application of optimization techniques. In this 
situation the designer focuses on working out of an 
adequate mathematical model and the analysis of the 
results obtained. Choosing optimal parameters for the 
system being designed is done through the use of 
formal mathematical optimization procedures. The 
use of such an approach exempts the designer of 
routine work aimed to select optimal combinations of 
variable parameters, allowing him to set and solve 
extremely complex problems of optimal designing. 
However, solutions obtained by means of 
mathematical modeling and optimization techniques 
in most cases are hard to implement in real life. This 
is largely due to the fact that while stating and solving 
optimization tasks by traditional (deterministic) 
approach, as a rule, various uncertainties influencing 

the efficiency of the designed system in real life 
conditions are not taken into consideration. 

An efficiency extremum value, obtained during the 
optimization problem solving in a deterministic 
setting, is a maximum attainable value and can be 
considered as just conventional optimum from the 
point of view of its practical implementation. Based 
on this fact, Jacek Marczyk states1: "Optimization is 
actually just the opposite of robustness". He considers 
the stochastic simulation using the Monte-Carlo 
technique as an alternative to traditional optimization. 
Our experience in the field of real-life optimization 
allows us to reformulate Marczyk's thesis in the 
following form: "Deterministic optimization is 
actually just the opposite of robustness". Since the 
19922 we are speaking about the necessity to use the 
"stochastic optimization" vs. "deterministic 
optimization" for real-life problems.  

In recent years, probabilistic design analysis and 
optimization methods have been developed3,5,6,8-10 to 
account for uncertainty and randomness through 
stochastic simulation and probabilistic analysis. 
Totality of such methods can be treated as the new 
scientific direction, named "Robust Design 
Optimization" (RDO). The distinct feature of this 
direction is the use of probability criteria to evaluate 
the technical system quality. The current paper does 
not provide a full review of literature in this growing 
field, but does include selected papers, characterizing 
the most interesting features of this approach. 

When solving problems of this class authors 
concentrate on the following main goals: 

1. Identify designs, which minimize the mean value 
of the performance under uncertain manufacturing 
conditions; 

2. Identify designs, which minimize the variability of 
the performance under uncertain (manufacturing or 
operation) conditions; 

3. Provide the best overall performance over the long 
time exploitation of the system; 

4. Provide the best probability to ensure the preset 
constraints; 

5. Various combinations of the goals 1 -4. 

Despite great variety of problem statements and the 
methods to solve optimization problems in conditions 
of uncertainty, there are a number of common 
problems that should be addressed by the 
investigators. In this paper we will try to indicate 
these problems and consider some ways for their 
solution. 
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Identifying uncertainties, choosing 
mathematical model 

A complex technical system cannot be created 
efficiently without a correct mathematical 
formalization of the design problem. While creating a 
system the designers are to form the vector of values 
of system efficiency )y,...,y,y(y m21= , which are 
to be maximized, minimized and constrained, to form 
the vector of variable parameters 

)x,...,x,x(x n21= , varying of which leads to the 
variation of the efficiency, and to form the vector of 
external conditions  )e,...,e,e(e k21= . Correlation 

between these vectors as )e,x(fy =  forms the 
mathematical model of the system under 
investigation. Existence of mathematical model 
makes it possible to formulate a design problem as an 
optimization task, which lies in the search of one or 

several vectors Dx ∈∗  that ensure the best (in some 
way) efficiency. Here 
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is the search region, )e,x(gi  is the constrained 
efficiency values. Such an “ideal” design problem 
statement was regarded, until recently, as a necessary 
and sufficient condition for obtaining an optimal 
design. In practice, however, such an approach to 
solving real-life tasks deals with serious problems 
connected with impossibility to implement optimal 
project solutions. The main reason for this lies in 
existence of a large number of uncertainties, which 
are not taken into account while modeling of the 
system, optimization problem statement and solving. 

Generally, system operation is affected by 
uncertainties in geometrical parameters due to 
production technology spread; in materials properties; 
in mathematical model accuracy; in environment 
conditions, etc. The recent work by Batill, et.al.1 
presents the number of issues related to the various 
types of uncertainty in multidisciplinary design 
optimization. Identification of uncertainties to be 
considered in every specific case is defined by 
physical problem statement as well as the possibilities 
of the mathematical model utilized. 

The attempt to include uncertainties while design 
problem formalization results in the necessity to 

consider relations: ),x(xx xξ= ; ),e(ee eξ= ; 

))e,x(),e,x(f()e,x(f fξΨ= , where f,e,x  are 

ideal vectors of variable parameters, environmental 
conditions and the ideal mathematical model; 

),,( fex ξξξξ =  is the vector of random values 

including uncertainties in implementation of variable 
parameters, environment conditions and the 

mathematical model accuracy. Generally, to solve a 
RDO problem one must be able to determine the 
system efficiency values )e,x(fy =  for given 

values of e,x , and hence to know the laws of 

distribution of ξ  vector components and functional 

dependence of ),f( fξΨ . To illustrate this task let 

us consider some of typical cases. 

1. Including uncertainties in variable parameters 
values 

This task generally occurs while optimization of 
design parameters of the system for given level of 
production technology, when it is necessary to ensure 
either maximum of mean value of efficiency or 
minimum of deviation of efficiency from the average 
value in mass production. In this case, to determine 

the laws of distribution of components of xξ  vector 

either a detailed analysis of technological processes 
can be used, or statistical data accumulated during 
production of similar systems. However, in most 

cases, components of the vector xξ  submit to a 

normal or a close to normal distribution.  

2. Including uncertainties of environment 
conditions 

The problem of including uncertainties of 
environment conditions is usually formulated as an 
adaptation task, where functioning of a technical 
system is being adjusted to changing environment by 
moving adjustable controls. For non-regulated 
conditions, however, or for systems without 
possibilities of measuring environment parameters, 
the Robust Design Optimization problem should be 
solved to minimize the influence of uncertainty of 
environment conditions on the efficiency values. In 
this case, the laws of distribution of components of 

xξ  vector are necessary. These laws, as a rule, 

represent results of integrating of experimental data.  

It is necessary to note that to fulfill optimization that 
incorporates uncertainties of variable parameters and 
the environment conditions a conventional 
deterministic mathematical model can be used as 

),,e,x(fy ex ξξ= . 

3. Including accuracy of mathematical model 

The necessity to include accuracy of mathematic 
modeling most often comes during solving of design 
problem of perspective system when modeling is 
based on some assumptions about attainability of 
some of the properties of materials, efficiency of 
different subsystems, forecasts of the market 
situation. In this case the problem is formulated as the 
problem of maximization of probability of attainment 
of some of the values of efficiency. Determining of 

distribution laws for components of vector fξ and 
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the functional dependence of ),f( fξΨ  is done in 

this case based on existing statistical dependencies 
and expert assessments. 

Probabilistic criteria 

When solving robust design optimization the 
efficiency values )e,x(fy =  are random ones. In 
this case it is necessary to use probabilistic 
optimization criteria )x(y~ . Let us consider some of 
the probabilistic criteria used when the efficiency 
index )e,x(y is to be minimized.  

1. )}e,x(f{M)x(y~ =  - mean value of 
efficiency; 

2. )}e,x(f{)x(y~ σ=  - magnitude of efficiency 
value deviation; 

3. }y)e,x(f{P)x(y~ pc ≤=  - probability that 

efficiency value is no worse than the one given; 

4. pc P)}x(y~)e,x(f{P ≥≤  - efficiency value 

ensured with probability no less than the one given. 

Each of these criteria reflects different robust 
properties of the project. Pic.1 shows a sample graph 

of function )1)5x(()1x(y 42 ++−−⋅⋅−−==  and 
probabilistic criteria No. 1,2 for the case of 

)1(xx ξ++== , where ξ  is a normally distributed 
random value with average of distribution equaling 0, 
and dispersion equaling 0.3. 
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Fig. 1 Examples of probability criteria. 

 

Suppose this equation represents some mathematical 
model of a system where efficiency index y  is to be 

minimized. It is obvious that the minimum of given 
function (deterministic solution) is reached at 1x = . 

If supposed that the design parameter x  is a random 
value depending on, say, technological spread, than 
minimum of the average value of efficiency 
(probabilistic criterion No.1 ) is reached as early as 

6.4x ≈ . Location of minimum by probabilistic 
criterion No.2 also differs from the deterministic 
solution. The considered example leads to an 
important conclusion that an RDO problem should 
not be reduced to the problem of “correction” of 
solution obtained through deterministic approach 
since extremums of probabilistic criteria may 
substantially differ, by design parameters, from 
extremum of deterministic criterion. This in fact 
means that in vicinity of deterministic solution there 
might be a solution improving robust properties of the 
project, however, to achieve maximal robust 
properties the problem must be solved by 
probabilistic criteria. 

It should be noticed that in the case of robust design 
optimization all of the constrained parameters of the 

system w,1j  ,0)e,x(g j ==≤≤  are also random 

values, and it is necessary to evaluate their 
probabilistic criteria. To simplify procedures of 
optimization problem solution and analysis of the 
obtained results some integral value can be 
introduced. This value is the probability of observing 
of all given constraints - )Dx(P)x(Po ∈∈== . Thus, 
from mathematical point of view the problem of 
robust design optimization can be formulated as 
follows: for given laws of distribution of components 

of vector ξ  a vector  ∗x is to be found that will 

ensure 
p0o P)x(P
)}x(y~{extr)x(y~

≥

∗ = , where p0P  is the 

given probability of constraints observation. 

Besides, value )x(P0  may be regarded as both 
additional criterion while stochastic optimization and 
can be used to calculate other criteria, for example: 

5. }y)e,x(f{P)x(y~ p≤= Σ - integrated 

probability that the value of efficiency is not worse 
than a given one ( 0c PPP ⋅=Σ ). 

6. pP)}x(y~)e,x(f{P ≥≤Σ - value of efficiency 

ensured with integrated probability no less than a 
given one ( 0c PPP ⋅=Σ ). 

Selecting this or that probabilistic criterion is 
determined by specific features of the optimization 
task. At the same time it is necessary to take into 
account that when applying criteria No.3…No.6, 
extra research is to be done to set correctly values of 

pP  and py , since in this case a situation with no 

solution to the set problem may occur.  

It is quite obvious that the formulated probabilistic 
criteria can contradict one another. Thus, for instance, 
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it will be sufficient to simply ensure high robust 
properties for a project (high values for cP , 0P , ΣP ) 
by artificially decreasing requirements for efficiency 
value py . Hence, robust design optimization 

problems (even for a single chosen efficiency) are in 
essence multicriteria ones and appropriate techniques 
to solve them should be used.  

Caclulating probabilistic criteria, choosing 
optimization technique 

The main problem occurring while solving robust 
design optimization problem is determining of 
probabilistic criteria values. There are various 
approaches to solve this problem. 

The most reliable information about values of 
probabilistic criteria can be obtained by means of 
analytical approach. In this case for every fixed 

Dx ∈  while determining, for instance, probability 
}y)e,x(f{P pc ≤ , calculation of multidimensional 

integral ∫
∈Ωξ

ξξ d),e,x(Pc  is required. This problem 

is a quite complicated one if dimensionality n>2. 
Bearing in mind that for complex technical systems it 
is practically impossible to analytically estimate the 
laws of distribution of efficiency and constraints 
(which is repeatedly required during iterative search 
for extremum), difficulties of solving real world tasks 
with this approach become clear.  

The simplest and the most universal method of 
evaluation of probabilistic criteria is the Monte-Carlo 
method. The main advantage of this method, as 
applied to RDO problems, is no necessity of setting 
of any a priori assumptions about the goal function 
peculiarities (smoothness, monotony, continuity, 
differentiability, and so forth). However, efficiency of 
Monte-Carlo method when solving real life problems 
to a great extent depends on the required accuracy of 
definition of probabilistic criteria. Particularly, 
applying gradient methods of optimization, requiring 
high accuracy of definition of probabilistic criteria, 
results in high computational expense (required 
number of tests at each iteration of extremum search 
makes up ≈ 106 ...109). 

Second approach includes a number of methods 
which are based on different approximation 
techniques (Taylor's series, response surfaces and so 
on). An examples of these methods one can see in the 
work10. The approximate methods of probability 
indexes evaluation usually require an additional 
information from mathematical model such as: 
responses sensitivities; variable to variable 
dependencies etc. Moreover, these methods are very 
sensitive with respect to topological peculiarities of 
objective functions and constraints.  

Note, that any optimization algorithm realizes the 
iterative procedure wi th the large number of objective 

functions and constraints evaluations. Total time of 
solution of any optimization problem, an RDO 
problem in particular, can be defined as time of 
calculation of criteria for one value of variable 
parameters multiplied by the necessary number of 
such calculations calccr NtT ⋅=Σ . This simple 
formula indicates a great importance of choosing an 
appropriate optimization technique. Attempts to 
decrease the number of calculations of values of 
probabilistic criteria calcN  leads to the necessity to 
use “fast” gradient methods of optimizations. 
However, efficiency of gradient methods 
substantially decreases when there is a “noisy” object 
function under investigation. Hence their usage 
requires high accuracy of assessment of probabilistic 
criteria, which, in its turn, leads to substantial 
increase of crt . Besides, the use of gradient 
techniques places substantial restrictions on topology 
of object functions, hence limiting their applicability 
when solving practical problems. A much more 
advantageous in this case can be the use of direct 
optimization techniques, having higher noise 
immunity and allowing for substantial decrease of the 
time crt under minor increase of calcN . 

When solving real-life RDO problems we use 
algorithms of IOSO technology (Indirect 
Optimization on the basis of Self-Organization). High 
noise-proof features of these algorithms enables us to 
solve RDO problems by means of Monte-Carlo 
technique with extremely small amount of statistical 
tests at each of the search iteration. Figure 2 shows 
example of efficiency of IOSO algorithms when 
solving problems optimization for “noisy” object 
functions. It is evident that even under intensive noise 
IOSO algorithms reliably provide extremum region. 
With the use of such an approach a more accurate 
assessment of probabilistic criteria is done after the 
solution of optimization problem at the stage of 
analysis of the results obtained. 

 

 

Fig. 2 Example of the IOSO algorithms noise-
immunity. 
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Multiple criteria in RDO problems 

The problem of reasonable choice of the procedure 
for calculation of probabilistic criteria as well as the 
optimization technique becomes more complicated if 
RDO problem assumes multiple criteria. As 
mentioned above, RDO problems are multicriteria 
ones by nature since they, in fact, assume 
compromises between what can be implemented in 
real life and the probability of achieving of obtained 
results. In these conditions the ultimate choice of the 
project for the investigated system is to be made 
based on the analysis of totality of Pareto-optimal 
projects, obtained with probabilistic and deterministic 
criteria.  

Within the framework of IOSO technology we have 
elaborated a number of multicreteria algorithms to 
solve such complex problems. The main advantages 
of these algorithms over traditional mathematical 
programming approaches are the following3: 

• convolution approaches are not used in solving 
multiobjective problems; 

• the algorithms determine the desired number of 
Pareto-optimal solutions, so that these solutions are 
uniformly distributed in the space of objective 
functions; 

• it is possible to solve the optimization problems 
for the objective functions of complex topology: non-
convex, non-differentiable, with many local optima; 

• relatively small number of probability indexes 
evaluations; 

• it is possible to naturally employ the 
parallelization of the computational process. 

These advantages are the basis for the wide use of the 
proposed method in the real-life problems. 

Let us consider the example of the multiobjective 
robust design optimization of the multistage axial 
flow compressor. The brief description of this 
optimization problem:  

• Purpose: To insure the maximum efficiency and 
maximum implementation probability under preset 
level of production technology; 

• Setting features: 140 independent variables (flow-
path geometry); two objectives; three nonlinear 
constraints (mass flow, pressure ratio, surge margin); 

• Optimization process features: Object under study 
– quasi-3D mathematical model. Implementation 
probability was calculated as the probability of 
assuring the preset constraints. 

Fig. 3 shows the main results of this problem. One 
can see that there is a compromise area between the 
ideal (deterministic) compressor efficiency and the 
implementation probability. In general, designer can 
select any solution from the obtained set. In this case 
the design No 4 was selected as the final design. 
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Fig. 3 Results of compressor multicriteria robust 
design optimization. 

 

While solving this problem we used only 50 calls of 
mathematical model to approximately evaluate the 
probability criterion at each iteration. After 400 
iterations optimization process was halted. Then we 
used 5000 additional calls of mathematical model to 
refine probability criteria for Pareto set found. Thus, 
total number of mathematical model calls was 25000. 
This is a not enormous value for the optimization 
problem having 140 independent variables, but 
solution of the same problem using more accurate 
mathematical model is problematic one. In this case 
reasonable choice is the usage of so-called multilevel 
RDO procedure. 

Multilevel RDO 

The feature of the Multilevel Robust Design 
Optimization procedure is the use of mathematical 
models of various fidelity (from the lowest to the 
highest) during the solution process and adaptive 
switching between them4. This procedure provides 
minimization of the number of times the high fidelity 
(true) models are used without reducing the accuracy 
of the resulting solution (fig. 4).  
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Fig. 4 Multilevel optimization scheme. 

 

The efficiency of this procedure may be demonstrated 
using the similar compressor optimization problem 
with 63 independent variables (fig. 5). As the 
surrogate model we used the simplified axis-
symmetrical model which is possible to be identified. 
The main idea of multilevel optimization is that 
information stored during the search is used to 
improve the surrogate model. However, this 
identification is correct not for the entire initial search 
area but only for certain neighborhood of the obtained 
Pareto set. This ensures purposeful improvement of 
probability criteria evaluation accuracy only in the 
area of optimal solutions. 

For this problem we obtained 10 Pareto-optimal 
solutions using only 60 direct calls to high-fidelity 
model. This example shows that it is possible to solve 
the optimization problem when the number of times 
the highest fidelity model is involved is less than the 
number of design variables. This provides 
considerable (several orders of magnitude) reduction 
in CPU time required for solution of complex 
optimization problems. 
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Fig. 5 Results of compressor multilevel robust design 
optimization. 

Conclusion 

The RDO problem is reduced to the problem of 
solution of optimization of the system’s design 

parameters according to probabilistic criteria. The 
efficiency of solution of such problems depends 
absolutely on the chosen technique for calculation of 
deterministic criteria as well as the optimization 
technique. One of the most promising techniques to 
solve of RDO problems is usage of approximate 
assessments of probabilistic criteria under Monte-
Carlo combined with direct optimization techniques, 
IOSO technology algorithms, for example. When 
solving complex real life RDO problems, application 
of multilevel optimization procedures, worked our 
under IOSO technology, may turn out an extremely 
effective way. 
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