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Abstract 
 
An advanced semi-stochastic algorithm for constrained multi-objective optimization has been 
adapted and combined with experimental testing and verification to determine optimum 
concentrations of alloying elements in heat-resistant and corrosion-resistant H-Series austenitic 
stainless steel alloys. The objective was to simultaneously maximize a number of alloy’s 
mechanical properties. This research will result in a rigorous tool for the design of high-strength 
H-Series steels and other types of alloys unattainable by any means existing at the present time. 
Such a material-by-design tool will also be able to reduce or minimize the need for the addition 
of expensive elements such as Cr, Ni, Co, Nb, Ti, V, etc. and still obtain the optimum properties 
of an alloy.  

 

Introduction 
 
There is an industry-wide need for improving material property performance for the 
applications that they are currently used for and to increase their upper use temperature for 
applications that improve the process efficiencies such as chemical and heat-treating processes 
carried out at higher than currently used temperatures. Instead of using still relatively unreliable 
and computationally highly complex thermodynamic models for the prediction of physical 
properties of alloys with given chemical compositions, we have adopted a new approach of 
using a stochastic optimization algorithm and actual experimental evaluations of the candidate 
alloys. This approach has the potential of identifying new compositions that have superior 
properties, while requiring only dozens rather than thousands of different alloy samples to be 
created and experimentally tested. Furthermore, this approach has the potential for creating and 
designing alloys for each application, thereby maximizing their utilization at reduced cost. . 
This work on designing a new class of alloys for high-temperature strength, corrosion, and 
thermal fatigue resistance falls into a category of “combinatorial methods” for rapid screening 
of materials for industrial applications and/or materials property optimization. It also stimulates 
acquisition of thermo-physical property data needed for materials processing and industrial 
application, a clear path to solution of major problems in modeling, process simulation, and 
control.   

 



The key to the success of this entire approach is the robustness, accuracy, and efficiency of the 
multi-objective constrained optimization algorithm. There are only a few commercially 
available general-purpose optimization software packages. They all use almost exclusively a 
variety of standard gradient-based optimization algorithms, which are known to be unreliable 
because of their tendency to terminate in the nearest feasible minimum instead of finding a 
global optimum [2,3,4]. Moreover, these algorithms can perform only optimization of a 
weighted linear combination of objective functions. This formulation does not provide a true 
multi-objective optimization capability, that is, each individual objective is not fully 
maximized. Furthermore, these optimizers require an extremely large number of objective 
function (mechanical and corrosion properties of alloys) evaluations, which makes the total 
number of experimental evaluations unacceptably large.   

 

We have adapted an advanced semi-stochastic algorithm for constrained multi-objective 
optimization [1] and have combined it with experimental testing and verification to determine 
optimum concentrations of alloying elements in heat-resistant and corrosion-resistant H-Series 
austenitic stainless steel alloys that will simultaneously maximize a number of alloy’s 
mechanical properties Semi-stochastic, truly multi-objective constrained optimization 
algorithms have not been commercialized yet and have not been demonstrated in this field of 
application. This work is based on a special adaptation and use of such an algorithm specifically 
for the task of optimizing properties of alloys while minimizing the number of experimental 
evaluations of the candidate alloys. This multi-objective optimization algorithm is of a semi-
stochastic type incorporating certain aspects of a selective search on a continuously updated 
multi-dimensional response surface. Both weighted linear combination of several objectives 
and true multi-objective formulation options creating Pareto fronts are incorporated in the 
algorithm. The main benefits of this algorithm are its outstanding reliability in avoiding local 
minimums, its computational speed, and a significantly reduced number of required 
experimentally evaluated alloy samples as compared to more traditional semi-stochastic 
optimizers like genetic algorithms. Furthermore, the self-adapting response surface formulation 
used in this research allows for incorporation of realistic non-smooth variations of 
experimentally obtained data and allows for accurate interpolation of such data. This 
optimization algorithm also allows for a finite number of chemically non-reacting ingredients in 
the alloy, for a finite number of physical properties of the alloy to be either minimized or 
maximized, and for a finite number of equality and inequality constraints. 

 
Multi-Objective Optimization Concepts 

 
With the continuing growth of computing resources available, the attention of design engineers 
has been rapidly shifting from the use of repetitive computational analysis, personal experience, 
and intuition, towards reliable and economical mathematically based optimization algorithms. 
This trend has exposed the practical limitations of traditional gradient-based optimization 
approaches [2] that easily terminate in a local minimum, can usually produce only single-
objective optimized solutions, and require that the objective function satisfies continuity and 
derivability conditions. These facts, together with the growing need for the multi-disciplinary 
and multi-objective approach to design with a large number of design variables, resulted in an 
increased interest in the use of various versions of hybrid [3,4], semi-stochastic [5,6,7,8] and 
especially stochastic [9,10] constrained optimization algorithms. It should be pointed out that 
including more objectives in the optimization process often has similar effects on the overall 
optimization effort required as including more constraints especially if these constraints are 
incorporated as penalty functions.   
 



The multi-objective optimization problem maximizes a vector of n objective functions 
 

max  Fi( X )          for i = 1, ... n (1) 
 
subject to a vector of inequality constraints 
 

gj( X )≤  0           for j = 1, ... m (2) 
 
and a vector of equality constraints 
 

hq( X ) = 0          for q = 1, ... k (3) 
 
In general, the solution of this problem is not unique. With the introduction of the Pareto 
dominance concept the possible solutions are divided into two subgroups: the dominated and 
the non-dominated. The solutions belonging to the second group are the "efficient" solutions, 
that is, the ones for which it is not possible to improve any individual objective without 
deteriorating the values of at least some of the remaining objectives. In formal terms, in case of 
a maximization problem, it is possible to write that the solution X  dominates the solution Y  if 
the following relation is true. 

 
))Y(F)X(F:j())Y(F)X(iF(YX jjiiP >∃∩≥∀⇔>  (4) 

 
Classical gradient-based optimization algorithms are capable, under strict continuity and 
derivability hypotheses, of finding the optimal value only in the case of a single objective. For 
these algorithms, the problem of finding the group of non-dominated solutions (the Pareto 
front) is reduced to several single objective optimizations where the objective becomes a 
weighted combination of objectives called utility function.  
 
Multi-objective optimization algorithms that are based on a genetic algorithm have been 
successfully applied in a number of engineering disciplines [5]. However, for a large number of 
design variables and objective functions that need to be extremized simultaneously, this 
approach becomes progressively too time consuming for practical applications in industry.  
 
Our approach is based on the widespread application of response surface methodology, based 
upon the original approximation concept, within the frameworks of which we adaptively use 
global and middle-range multi-point approximations. One of the advantages of this approach is 
the possibility of ensuring good approximating capabilities using a minimum amount of 
available information. This possibility is based on self-organization and evolutionary modeling 
concepts [1,7]. During the approximation, the approximation function structure is being 
evolutionarily changed, so that it allows us to approximate successfully the optimized functions 
and constraints having sufficiently complicated topology. The obtained approximation 
functions can be used by multi-level procedures [7] with the adaptive change of simulation 
level within both a single and multiple disciplines of object analysis, and also for the solution of 
their interaction problems. 
 
Multi-objective optimization problem solution [7,8] is based on the use of approximation 
functions for individual objectives and constraints. The current search area of adaptive 
changing makes it possible to search numerically the Pareto-optimal set without the use of any 
versions of composite objective functions (convolution approach). To reduce the computing 
time significantly, we have developed a multi-level multi-objective constrained optimization 
methodology that is a modified version of a method of Indirect Optimization based upon Self-



Organization (IOSO) [1] and evolutionary simulation principles. Each iteration of IOSO 
algorithm consists of two steps. The first step is the creation of an analytical approximation of 
the objective function(s). Each iteration in this step represents a decomposition of the initial 
approximation function into a set of simple analytical approximation functions so that the final 
response function is a multi-level graph. The second step is the optimization of this 
approximation function. This approach allows for corrective updates of the structure and the 
parameters of the response surface approximation. The distinctive feature of this approach is an 
extremely low number of trial points to initialize the algorithm (typically 30 to 50 values of the 
objective function for the optimization problems with nearly 100 design variables). During the 
IOSO operation, the information concerning the behavior of the objective function in the 
vicinity of the extremum is stored, and the response function is made more accurate only for 
this search area. While proceeding from one iteration to the next, the following steps are carried 
out: modification of the experiment plan; adaptive selection of current extremum search area; 
choice of the response function type (global or middle-range); transformation of the response 
function; modification of both parameters and structure of the optimization algorithms; and, if 
necessary, selection of new promising points within the researched area. Thus, during each 
iteration, a series of approximation functions for a particular objective of optimization is 
constructed. These functions differ from each other according to both structure and definition 
range. The subsequent optimization of these approximation functions allows us to determine a 
set of vectors of optimized variables. 
 
It should be pointed out that the IOSO approach is different than the artificial neural network 
approach that performs fast interpolation of the existing experimental data sets [11,12]. Our 
approach combines a multi-level graph theory, a special version of radial basis function 
formulations [13], and neural networks into a self-adaptive response surface optimization 
algorithm capable of exploring and optimizing data that is outside of the original data set. 
 

Technical Feasibility and Objectives 
 
The problem of search for Pareto-optimum solutions set while varying chemical composition of 
an alloy would be an unacceptably labor-intensive process. This is because of an extremely 
large number of alloy compositions that would need to be created and because several of the 
properties of each of these alloys would have to be evaluated experimentally. In this case, we 
can speak only about the creation of some rather extensive database including the information 
on various properties of alloys for various combinations of a chemical structure.  
 
With reference to a particular problem of creation of an alloy with desirable properties, there 
will inevitably arise a problem of constraints that need to be specified on the objective 
functions. Such objective constraints should be set by the user (expert) and could be allowed to 
vary during the solution process. For example, minimum acceptable value for the Young’s 
modulus of elasticity could be specified as an inequality constraint. Or, maximum acceptable 
percentage of each of the most expensive ingredients in the alloy could be specified as a cost 
objective constraint. Or, the total acceptable manufacturing cost of an alloy could be specified 
as an equality constraint.  
 
Thus, we can consider the possibilities of using the means and methods of optimization (and, in 
particular, IOSO) for the solution of particular problems of alloy's properties optimization. 
Unfortunately, such problems, as a rule, are difficult to formalize at the initial stage, since the 
user does not know initially what values certain objectives could attain and how the remaining 
objectives will vary. For example, for the optimization of a problem in the car industry with six 
variables we needed approximately 60 experiments when using the basic IOSO algorithm. 
However, for optimization of the classical Rosenbrock test function, having only two variables, 



it was necessary to perform almost 300 objective function evaluations. Thus, it is very difficult 
to predict the number of experiments required in the optimization application utilized here. 
Therefore, it seems that such problems of optimization can be solved only in an interactive 
mode, when the user during the solution can change both objective constraints and objective 
functions. In this case, one can speak about optimally controlled experiments. Let us consider 
several different scenarios for the solution of optimization problems for these conditions. 
 
The first approach is to perform a general multi-objective optimization of the material 
properties. Within the framework of this strategy we are to solve the multi-objective 
optimization problem (to find the Pareto set) using the general IOSO algorithm. This strategy is 
the most accurate, but it requires a very large number of experiments. 
 
The second approach is an interactive step-by-step optimization of the material properties. The 
first step of this strategy is to create an initial plan of experiments. This involves the 
formulation of a single (hybrid) optimization objective by the user (this objective may be the 
convolution of particular objectives with different weight coefficients assigned to each of them) 
and one optimization step to minimize this objective. The result of this strategy is the single 
(not Pareto-set) solution. However, during such relatively efficient quasi multi-objective 
optimization process we can accumulate the information about the particular objectives and 
construct progressively more accurate response surface models. 
 
In order to develop and realize the most effective optimization strategies (both of the first and 
the second kind) we have to perform a thorough preliminary search for the classes of base 
functions that will be able to construct the most accurate response surface models.  
 

Brief Description of Methodology 
 
The methodology for steel optimization is subject to several simultaneous objectives in the 
organization and conduct of an iterative optimized experiment. The result of these studies is the 
Pareto-optimal set of steel compositions that simultaneously optimizes the chosen objectives. 
The multi-objective optimization algorithm is based upon the use of a response surface 
technology developed within the frameworks of the IOSO concept. Here, response surfaces are 
created that are based on the available experimental data. During the conduct of research the 
information is being stored concerning the properties of steel in the vicinity of the Pareto set. 
This allows us to improve the accuracy of the results. Every iteration of this optimization 
methodology results in the formulation of a new set of alloy compositions, which are promised 
to be Pareto optimal and need experimental studies to obtain the true values of the objectives. 
While conducting this work we used the algorithms of artificial neural networks (ANN) for 
creating the response surfaces. We also used radial-basis functions that were modified for the 
specifics of this optimization research. The essence of modification is the selection of ANN 
parameters during the network training stage. They are determined from the minimum 
curvature of the response surface and provide the best predictive properties for the given set of 
experimental points W . In engineering terms, every iteration of multi-objective 
optimization methodology for H-series steel composition consists of following steps: 

inibest W∈

1. Constructing and training the ANN1 for a given set of experimental points based on the 
condition W . inibest W=

2. Carrying out multi-objective optimization using ANN1 and obtaining the pre-defined 
number of Pareto-optimal solutions P1.  

3. Determination of a subset of experimental points Wbest, which are the closest to P1 
points in the space of design variables. 



4. Training the ANN2-based on the insurance of the best predictive properties applying to 
the obtained subset of experimental points W inibest W∈ .  

5. Carrying out multi-objective optimization using ANN2 and obtaining the pre-defined 
number of Pareto-optimal solutions, P2. 

 
Initial Data Set 

 
The initial data were the results of experimental testing of 17 samples of H-series steels with 
different percentage of alloying components. The experimental data for creep rupture strength 
after 100 hours at temperature of 1800 F is presented in Table I. Note that the poor set of 
available experimental data (only 17 points for 6 independent variables) and non-uniformity of 
their distribution in the space of design variables do not allow us to hope to obtain good 
accuracy of the results in the first iteration of this multi-objective optimization methodology. 
However, the main goal of this research is the creation of a plan of future experiment, which 
will allow us to improve the accuracy of the optimized steel composition for the next iterations. 
 

Table I. The Initial Data Set 
Nominal Composition (Wt. %) 1800 F 

Fe C Mn Si Ni Cr N 10^2h (Psi)

54.64 0.1 0.87 1.24 18.9 24.2 0.05 1684 

52.92 0.14 1.02 1.22 20.1 24.5 0.1 2084 

52.88 0.17 0.92 1.23 20.1 24.6 0.1 2303 

54.28 0.2 0.95 1.07 19.3 24.1 0.1 2691 

51.01 0.27 0.98 1.23 20.4 26 0.11 3324 

50.75 0.28 1.05 1.27 20 26.5 0.15 3500 

52.1 0.28 0.52 0.52 20 26.5 0.08 3600 

51.73 0.3 0.53 0.84 20 26.5 0.1 3800 

50.6 0.3 0.58 1.62 20.1 26.7 0.1 4300 

51.85 0.3 0.53 1.21 19.7 26.3 0.11 4250 

51.06 0.32 0.98 1.26 20.2 26.1 0.08 4415 

51.54 0.32 0.51 1.25 20 26.3 0.08 4600 

51.54 0.32 0.52 1.19 19.9 26.3 0.23 4800 

52.68 0.32 0.5 0.5 19.9 26 0.1 3600 

49.09 0.32 0.51 1.26 19.9 28.8 0.12 3600 

53.9 0.33 0.51 1.25 20 23.9 0.11 3700 

52.409 0.35 0.82 1.07 21.1 24.2 0.051 4573 

 



Design Variables and Multiple Optimization Objectives 
 
As the independent design variables for this problem we considered the percentage of the 
following components: C, Mn, Si, Ni, Cr, N. Ranges of their variation were set according to 
lower and upper bounds of the available set of experimental data. The bounds are presented in 
Table II. 
 

Table II. The Specified Ranges of Design Variables 
 C Mn Si Ni Cr N 

Min 0.1 0.5 0.5 18.9 23.9 0.05 

Max 0.35 1.05 1.62 21.1 28.8 0.23 

 
As the main optimization objective, we considered the creep rupture strength of the H-type steel 
after 100 hours under the temperature of 1800 F. Other objectives have been chosen issuing 
from the necessity to reduce the cost of the steel. In this work, the additional three objectives 
were to simultaneously minimize the percentages of Mn, Ni, Cr. Thus, the multi-objective 
optimization problem had 6 independent design variables and 4 simultaneous objectives. We 
defined the desirable number of Pareto optimal solutions as 10 points. 
 

Numerical Results 
 
Figure 1 demonstrates the results characterizing the accuracy of the obtained response surface 
based on ANN1. One can see that for most of the available experimental points mean error of 
the prediction created by the ANN1 does not exceed 4%. The exception is observed for the 
experimental point No. 11, where mean error is 8.4%. As a result of this four-objective 
constrained optimization problem solution, a subset of experimental points W , which 
contained points No. 8,9,13...17, was obtained. The training of ANN2 allowed us to improve 
the accuracy of approximation for these points of the experimental data set (Figure 2). Then, the 
four-objective optimization task was actually solved by using ANN2 resulting in a Pareto-
optimal set of 10 new alloy compositions. This set is presented in Table III. 

inibest W∈

 
Table III. The Set of Ten Pareto-Optimal Solutions 

Pareto-optimal Composition (Wt. %) 1800F 

Fe C Mn Si Ni Cr N Psi (predicted values)

51.41 0.33 0.50 1.32 19.89 26.31 0.23 4804 

53.42 0.35 1.03 0.50 20.73 23.90 0.08 4214 

52.51 0.35 1.05 1.30 19.05 25.64 0.10 4031 

50.50 0.33 0.67 1.43 18.90 28.02 0.16 3828 

53.33 0.29 0.50 0.51 21.10 24.06 0.20 3607 

53.41 0.19 1.01 1.09 20.31 23.90 0.09 2350 

53.22 0.22 0.97 1.38 18.90 25.20 0.11 2338 

50.88 0.22 0.52 1.59 18.90 27.68 0.22 2257 

53.49 0.15 0.68 1.02 20.60 23.90 0.17 2235 

54.74 0.12 0.55 1.57 18.90 23.90 0.22 1706 



 
Figure 3 shows the 10 new (optimized) chemical compositions that should be used to create the 
next generation of physical alloy samples that will need to be experimentally tested. One can 
see that carrying out the experimental research for the predicted alloy compositions will make 
the distribution of the experimental points more uniform, and thus it will improve the quality of 
the response surfaces. Figures 4 and 5 show the examples of ANN2 response surface topology 
in the vicinity of the first, second, and the tenth point from the obtained Pareto set. 
 

Summary 
 

A conceptually new method has been developed for determining proper chemical compositions 
of high-temperature steels that will have simultaneously optimized multiple physical properties.  
The method is based on a novel semi-stochastic multi-objective optimization algorithm that can 
utilize experimentally evaluated physical properties of a relatively small number of different 
alloy samples. The final outcome of the development of this type of multi-objective semi-
stochastic optimization could be the ability of H-series stainless steel producers and users to 
predict either the alloy compositions for desired properties or to predict properties of given 
alloy compositions. Furthermore, this methodology is quite general and could be applied to 
multi-objective optimization of compositions of other types of metal alloys and even polymers. 
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Figure 1: Accuracy of the ANN1. 
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Figure 2: Accuracy of the ANN2. 
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Figure 3: Result of the first iteration of steel composition optimization. 
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Figure 4: Topology of the ANN2-based response surface in the vicinity of 1st, 2nd and 10th  
Pareto-optimum points for C – Mn. 
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Figure 5: Topology of the ANN2-based response surface in the vicinity of 1st, 2nd and 10th  
Pareto-optimum points for Mn – Si. 
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