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Abstract
This paper illustrates an automatic multi-objective

design optimization of a two-dimensional airfoil
cascade row having a finite number of airfoils.  The
objectives were to simultaneously minimize the total
pressure loss, maximize total aerodynamic loading
(force tangent to the cascade), and minimize the
number of airfoils in the finite cascade row.  The
constraints were: fixed mass flow rate, fixed axial
chord, fixed inlet and exit flow angles, fixed blade
cross-section area, minimum allowable thickness
distribution, minimum allowable lift force, and a
minimum allowable trailing edge radius.  This means
that the entire airfoil cascade shape was optimized
including its stagger angle, thickness, curvature, and
solidity.  The analysis of the performance of
intermediate airfoil cascade shapes were performed
using an unstructured grid based compressible Navier-
Stokes flow-field analysis code with k-ε turbulence
model.  A robust stochastic algorithm was used in the
automatic multi-objective constrained shape design
process that had 18 design variables, 5 nonlinear
constraints, and 3 objectives.  Simultaneous reductions
of the total pressure loss, increases of the total loading,
and decreases of the number of airfoils were achieved
using this method on a VKI high subsonic exit flow
axial turbine cascade.
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I.  Introduction
The attention of design engineers has been rapidly

shifting from the use of repetitive computational analysis,
personal experience, and intuition towards a reliable and
economical mathematically based optimization algorithms.
This trend has exposed the substantial weakness of
traditional gradient based optimization approaches that
easily terminate in a local minimum, can usually produce
only single-objective optimized solutions, and require that
the objective function satisfies continuity and derivability
conditions.  These facts, together with the growing need for
multi-disciplinary and multi-objective approach to design
with a large number of design variables, resulted in an
increased interest in the use of various versions of
stochastic optimization algorithms.

Examples of single-objective constrained airfoil
cascade shape optimization were published recently
demonstrating the feasibility of using various genetic
algorithms in conjunction with Euler equations solvers1-4

and Navier-Stokes flow-field analysis codes5,6.  These were
examples of constrained optimization of a single objective
(minimization of total pressure loss) while keeping the gap-
to-chord ratio (cascade solidity) fixed.

A typical multiple objective of a design for retrofit of
an existing cascade would be to fix the number of airfoils
and total loading (specific work) of a finite cascade (sum of
lift forces generated by all of the airfoils in a finite cascade)
while minimizing the total pressure loss across the cascade.
This approach represents a natural next step that could
follow design optimization for a retrofit of a multistage
turbomachine7,8 where optimized inlet and exit flow angles
were a priori determined for each blade row.
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A considerably more challenging problem is to
simultaneously maximize the loading on the entire
finite cascade, minimize the total pressure loss across
the cascade, and minimize the total number of airfoils
in the finite cascade.  For the fixed mass flow rate and
inlet and exit flow-field conditions this means
maximizing gap-to-chord ratio (minimizing solidity) of
the cascade simultaneously with the optimization of the
airfoil shape.  Reduction of the number of blades
reduces the capital costs and the life cost of the
turbomachine.

Therefore, results of such multi-objective
constrained optimization should give the designer
more options when making a final decision which of
the feasible optimized cascades is the best.

It should be pointed out that including more
objectives in the optimization process often has similar
effects on the overall optimization effort required as
including more constraints especially if these
constraints are incorporated as penalty functions.

II. Multi-Objective Stochastic Optimizer
The multi-objective optimization problem can be

expressed as follows.  Maximize a vector of n
objective functions

max  Fi( X )          for i = 1, ... n (1)

subject to a vector of inequality constraints

gj( X ) ≤  0           for j = 1, ... m (2)

and a vector of equality constraints

hq( X ) = 0          for q = 1, ... k (3)

In general, the solution of this problem is not
unique.  With the introduction of the Pareto dominance
concept the possible solutions are divided in two
subgroups: the dominated and the non-dominated.
The solutions belonging to the second group are the
"efficient" solutions, that is, the ones for which it is not
possible to increase any objective without deteriorating
the values of the remaining objectives.  In formal
terms, in case of a maximization problem, it is possible
to write that the solution X  dominates the solution Y
if the following relation is true:

))Y(F)X(F:j())Y(F)X(iF(YX jjiiP >∃∩≥∀⇔> (4)

Classical gradient based optimization algorithms
are capable, under strict continuity and derivability
hypotheses, of finding the optimal value only in the
case of a single objective.  Therefore, the problem of
finding the group of non-dominated solutions (the

Pareto front) is reduced to several single objective
optimizations where the objective becomes a weighted
combination of the objectives called utility function, U.

∑
=

⋅=
n

1i
ii )X(FW)X(U (5)

Recently, multi-objective optimization algorithms based
on a genetic algorithm have been successfully applied in
aerodynamic shape design9,10.  But, for a very large number
of design variables and especially for a very large number
of objective functions that need to be extremized
simultaneously, this approach becomes progressively too
costly.  An alternative for such problems is a novel
stochastic optimization formulation combined with a
response surface approach.

The multi-objective constrained optimization algorithm
used in this work is the modified version of an indirect
method of optimization based upon self-organization
(IOSO) and evolutionary simulation principles11,12.  Each
iteration of IOSO consists of two steps.  First step is
creation of an approximation of the objective function(s).
Each iteration in this step represents a decomposition of
initial approximation function into a set of simple
approximation functions.  The final response function is a
multilevel graph.  Second step is the optimization of this
approximation function.  This approach allows for
corrections of the structure and the parameters of the
response surface approximation.  The distinctive feature of
this approach is an extremely low number of trial points to
initialize the algorithm (30-50 points for the optimization
problems with nearly 100 design variables).

The obtained response functions are used in the
procedures of multilevel optimization with the adaptive
changing of the simulation level within the frameworks of
both single and multiple disciplines of the object analysis.
In the process of each iteration of IOSO work the
optimization of the response function is carried out within
current search area.  This step is followed by the direct call
to the mathematical model for the obtained point.  During
the IOSO work the information concerning the behavior of
the objective function nearby the extremum is stored, and
the response function is made more accurate just for this
search area.  While passing from one iteration to another,
following steps are carried out: the modification of the
experiment plan; the adaptive selection of current
extremum search area; the choice of the response function
type (global or middle-range); the transformation of the
response function; the modification of both parameters and
structure of the optimization algorithms; and, if necessary,
the selection of new promising points within the researched
area.

Thus, during each iteration a series of approximation
functions for particular criteria of optimization is built.
These functions differ from each other according to both
structure and definition range.  The subsequent
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optimization of the given approximation functions
allows us to determine a set of vectors of optimized
variables, which are used for computation of
optimization criteria on a parallel computer.

III. Geometry Parameterization
During the cascade shape optimization process,

flow-fields for a large number of different cascade
airfoil geometries need to be analyzed.  The airfoil
shape was defined with the following nine parameters:
the tangential and axial chord, the inlet and exit half
wedge angle, the inlet and outlet airfoil angle, the
throat, unguided turning angle, and the leading and
trailing edge radii11.  One of these parameters (axial
chord) was kept fixed.  The airfoil shape was allowed
significant additional flexibility by adding a continuous
arbitrary perturbation in addition to the original nine
parameters.  This shape perturbation was modeled with
a B-spline that had eight control vertices thus resulting
in a total of 9 + 8 = 17 design variables6 plus one
additional variable for the number of airfoils in a finite
length cascade.  The design variables’ ranges were set
so that the optimizer would have a wide variety of very
different airfoil shapes so as to test its robustness.

IV. Viscous Flow-Field Analysis Code
For the aerodynamic analysis of the performance of

each candidate airfoil cascade we used two-
dimensional Reynolds averaged compressible Navier-
Stokes equations in conjunction with standard k-ε
equations turbulence model14.  The equations were
discretized using finite volume scheme.  Considering
the significant shape variations of the airfoil cascade
during current multi-objective optimization,
unstructured triangular grid elements were used (Fig.
1) to automatically discretize the computational
domain and cluster the grid points in the vicinity of the
airfoil surface and wake region15.  The discretized
Navier-Stokes equations fully coupled with the
turbulence model equations were integrated in time
using an explicit four-stage Runge-Kutta time-stepping
scheme16.  Local time stepping and pseudo-Laplacian
residual smoothing techniques were used to accelerate
the convergence to steady state solution17,18.  The
convective fluxes were computed using the Roe flux-
difference splitting approach19, while the viscous
fluxes were calculated with central difference scheme.
Accuracy of the flow-field analysis code can be
evaluated by comparing computed and experimentally
measured surface isentropic Mach number distribution
(Fig. 2) on an axial turbine cascade tested20 by the
VKI.  Figure 3 also demonstrates the calculated field
of iso-Mach contours.

V. Test Problem Definition
As an example of a realistic initial airfoil cascade on

which the multi-objective constrained optimization will be
performed, we chose to use the VKI cascade20.  It should be
pointed out that this cascade had already a very high
efficiency because it was designed using an inverse shape
design method.  Using inlet and exit boundary conditions
and the geometry of this initial airfoil cascade, we assumed
an annular stator finite cascade with the following
conditions:

inlet total temperature T01 = 278 K
inlet total pressure p01 = 430000 Pa
exit average static pressure p2  = 101300 Pa
inlet flow angle = 1.9 degrees
span radius = 223.8 mm
number of airfoils = 45

The exit flow angle can be optimized a priori using a
very efficient multistage optimization algorithm7,8.  Using
our two-dimensional linear cascade Navier-Stokes flow-
field analysis code, the following flow-field parameters
were predicted for this annular stator finite cascade:

loading force (for 45 airfoils) = 186599 N
mass-flow-averaged total pressure loss = 103078 Pa
mass flow rate (for 45 passages) per unit span
= 384 kg m-1 s-1

exit flow angle = -70°
single airfoil cross-section area = 108.8 mm2

With these conditions we defined the following objectives
(Table 1) and the constraints (Table 2).

Table 1.  Simultaneous objectives in the multi-objective
constrained optimization

OBJECTIVES
MAXIMIZE   Total loading force
MINIMIZE   Total pressure loss
MINIMIZE   Number of airfoils

Table 2.  Inequality and equality constraints used in the
multi-objective constrained optimization

CONSTRAINTS Values
Total loading > 186599 N
Mass flow rate (per unit span) = 384 kg m-1 s-1

Exit flow angle = -70°
Airfoil cross-section area = 108.8 mm2

Airfoil trailing edge radius = 0.5 mm

The constraints were incorporated in the objective
functions via penalty formulation.  For this problem, the
following objective functions are to be minimized
simultaneously.
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nbF =3  (8)

Here, p0 is the total pressure, θ is the average exit
flow angle, m&  is the mass flow rate, A is the cross-
sectional area of the airfoil, nb is the total number of
airfoils, and L is the total loading.  The variable td is
the largest relative error in the airfoil thickness
distribution compared to a specified minimum
allowable thickness distribution.  This geometric
constraint prevents airfoil from becoming too thin, thus
mechanically or thermally infeasible.  The constants ci

are user specified penalty terms.  For this application,
the penalty constants were initially set to 100000.  A
value of zero was used for the constants when any of
the constraints were within one percent above or below
the target constraint value.

VI. Numerical Results
With these definitions we performed a constrained

multi-objective shape optimization of the finite VKI
cascade.  That is, we were able to observe if our
optimization creates improved and realistic results
since we were able to compare them with a realistic
initial finite cascade configuration.  For this
constrained multi-objective optimization we used a
modified IOSO.

In a multi-objective optimization we strive to
compute the group of the not-dominated solutions
which is known as a Pareto front.  These are the
feasible solutions found during the optimization that
cannot be improved for one objective without
sacrificing another.  In Figs. 4-6 it is possible to see the
points that belong to two-dimensional projections of
the actual three-dimensional Pareto surface
demonstrating that the multi-objective optimization
was successful.  One can also see that there was a
design that was better than the original VKI airfoil for
all three objectives.  Thus the VKI airfoil is not a
member of the final Pareto optimal set.  In the Pareto
front we chose to compare three optimized solutions
(cascades No.1, No.3, and No.6 in Table 3).  These are
some of the best feasible solutions obtained during the
constrained multi-objective optimization.

Table 3.  A comparison of the three objectives achieved by
the original VKI cascade and the three prominent cascades
obtained with our multi-objective constrained optimization.

VKI No.1 No.3 No.6
Total
pressure
loss, Pa

103078 95164 97050 95012

Number of
airfoils

45 44 46 45

Total
loading, N

186599 189359 196778 193228

Cascade No.1 offers reduction of 7% in total pressure
loss, needs 1 airfoil less than the VKI cascade, and
generates about 1% higher total loading.  Cascade No.3
offers reduction of 5% in total pressure loss, need 1 more
airfoil than the VKI cascade, and generates about 6%
higher total loading.  Cascade No.6 offers reduction of 7%
in total pressure loss, need the same number of airfoils as
the VKI cascade, and generates about 4% higher total
loading.  The cascade No.1 may be the best compromise
among three optimized cascades for many turbomachinary
designs.

This means that it is possible to design turbomachinery
blade rows that will have simultaneously lower total
pressure loss, higher total loading, and fewer blades while
preserving some of the same features of the original blade
rows (inlet and exit flow angles, total mass flow rate, blade
cross-section area, and trailing edge radius).  Actual
difference in the geometric shapes of the original VKI
airfoil and the three representative optimized cascades is
clearly visible (Fig. 3).

The three optimized cascade airfoil geometries are quite
similar.  This is because we have 4 equality constraints and
3 objectives to satisfy.  Consequently, the feasible domain
of design variables (the ranges of design variables that
satisfy the specified constraints) is very small6 and the
geometries and pressure fields (Figs. 7-10) for the three
best optimized solutions are very similar.  It appears that
both the passage shock and the trailing edge shock are
weaker in the optimized configurations as compared to the
original VKI finite cascade.

We used 600 points on the airfoil surface that typically
resulted in a grid of approximately 20000 triangles.
Clustering the grid especially around trailing edge and
closer to the airfoil surface can influence the results
especially if there are strong trailing edge shocks like in
this supersonic exit cascade case.  The results achieved can
also be influenced by the choice of the turbulence model or
a transition point location.  Thus, the role of the designer is
to use a proven and robust flow-field analysis code and
specify meaningful ranges of the design variables, the
multiple objective functions, and the constraints.  Finally,
the designer ultimately must choose the best compromise
solution among the optimized solutions that form the Pareto
front.
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All computations were performed on our 32 node
distributed memory parallel computer with 400 MHz
Pentium II processors and a total of 8GB RAM. Each
call to IOSO consumed a negligible fraction of
computing time compared to each call to the flow-field
analysis code which consumed about 15 minutes on a
single processor.  The overall computing time for this
test case on our parallel machine consumed
approximately 50 hours. Although the optimization
problem seemed relatively easy (only three objectives,
18 design variables and five constraints), it consumed
a total of 5611 analysis calls to the 2-D flow-field
analysis code in order to find enough points in the
feasible region having relative errors in equality
constraints less than one percent.

In other words, the size of the feasible domain in
the design variable space was extremely small since it
was reduced by numerous constraints.  Furthermore,
the feasible domain proved to have a very complex
topology thus making this multi-objective constrained
optimization problem a very challenging test case for
any optimizer.

The original VKI cascade already had a very high
efficiency since it was designed using an inverse shape
design method.  The number of airfoils that we used in
the original finite VKI cascade was already extremely
small.

VII. Conclusions
Using a robust Navier-Stokes flow-field analysis

code, a flexible geometric parameterization
formulation, a reliable grid generation code, and a
multi-objective stochastic optimization algorithm with
a number of user-specified constraints, it was
demonstrated that it is possible to automatically design
airfoil cascade configurations that will be more
efficient and have fewer airfoils than the existing good
cascades.  This multi-objective design optimization
methodology can be easily extended to 3-D blade row
configurations.
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Fig. 3: Comparison of three optimized airfoil cascades
against the original VKI airfoil cascade.

Fig. 4: Comparison of total lift produced versus
number of airfoils for optimized airfoil cascades and
the VKI airfoil cascade.

Fig. 5: Comparison of total pressure loss generated versus
number of airfoils for cascades of optimized airfoils and for
the original VKI airfoil cascade.

Fig. 6: Comparison of total pressure loss generated versus
total loading produced for various numbers of airfoils for
optimized airfoil cascades and the VKI airfoil cascade.
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Fig. 7: Static pressure field for VKI airfoil cascade.

Fig. 8: Static pressure field for optimized cascade
No.1.

Fig. 9: Static pressure field for optimized cascade No.3.

Fig. 10: Static pressure field for optimized cascade No.6.
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